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Abstrw&--An analytic& sohztiorr of concentration distribxxtion in circular pipe flow is obtained for sm& 
F&l& numbers. A perturbation technique with a strained coordinate is applied. For P&cl&t numbers less 

than &I, the radial distribution of concentration is found to be practicaliy uniform. 

NOMENCLATURE 

concentration of the solute ; 
characteristic concentration ; 
dimensionless concentration, 

c/c, ; 
diffusion coefficient of the solute; 
function defined by equation (6); 
perturbation of F ; 
Laplace transform of .F ; 
Laplace transform of l;;t ; 
adjustable function, see equatian 
(17); 
shorthand notations, see equa- 
tions (39H41); 
zero order Bessel function of first 
kind ; 
first order Bessel function of first 
kind ; 
F&fkt number, tf,, R/D ; 
radius of tube ; 
radial coord~ate ; 
dimensionless radial coordinate, 
T/R ; 
independent variable defined by 
equation (16); 
time ; 
dimensionless time, TO/R2 ; 
maximum velocity in tube ; 
longitudinal coordinate ; 
dimensionless ~on~tud~~ co- 
ordinate3 Z/R ; 

strained coordinate defined by 
equation (17); 
shorthand notation, see equation 
(36); 
eigenvalue, see equation (34). 

A SOLUBLE material introduced in a flow 
spreads out under the combined influence of 
the molecular diffusion due to Brownian motion 
and the convection due to the variation of bulk 
velocity. Dispersion of a solute in a circular 
tube was investigated first by Taylor [l-3] and 
later by several other investigators [&lo]. 
Recently, Gill et al. [l l-173 extended this line 
of study considerably, using both theoretical 
and experimental methods. 

Non-uniform co~~ntrat~o~ in a tube tlow 
may disturb #he otherwise parabolic velocity 
profile by including natural convection and 
further viscosity variation. A complete analysis 
of this problem requires consideration of 
momentum and mass transfer simultaneously, 
Gill et al. [13, 171 studied the effect of natural 
convection on dispersion and showed that its 
effect could be substantial for small P&l& 
number. However, in small capillaries of tight 
porous media, the Grashof number which is 
indicative of natural coxrvection could also be 
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small and perhaps small enough that the effect 
of natural convection could be neglected. 

In this paper, we will simply neglect natural 
convection and use a perturbation technique 
for small P&St number to find the local 
concentration distribution in a tube flow. 

STATEMENT OF PROBLEM 

F=O at t=O (8) 

F=O at x+00 (9) 

F = exp ‘g t 
( > 

at x=0 (10) 

aF 0 -_= 
al 

at r=O,l. (11) 

Let us consider an axially symmetric mass 
Applying the Laplace transform, equations 

transfer in a steady flow running through a 
(7)-(11) yield 

circular pipe. The flow is initially free from the 
solute, and a solution of constant concentration 
starts flowing through one end of the pipe at 

s~+Pe(;-r2)(~+!q 

time zero. a2F i aF” a2F 
Interpreted in mathematical equations, the 

statement of the problem becomes 
=p+;z+= (12) 

P=o at x-+ 00 (13) 

With initial and boundary conditions ; 

C=O at t=O for x > 0 (2) 

c=o at x+00 (3) 

p= l 
s - (Pe2/16) 

at x=0 (14) 

aP 0 
ar= 

at r = 0,l (15) 

C=l at x=0 for t > 0 (4) where F is the transformed variable defined by 

ac 0 
aY= 

at r=O,l. (5) 
m 

p(s) = [ F(t) evS’ dt. (16) 

All the variables in the above equations are 
dimensionless and their notations are con- 
ventional. Refer to the nomenclature section for 
further clarification. 

It is convenient to define a new dependent 
variable F such that 

C = F(x,r,t)exp[F k -St)]. (6) 

We then obtain a new set of differential equa- 
tions ; 

J 
0 

At the present, an exact analytic solution of 
the above set of equations is difficult to find. 
Here, we will try to obtain an approximation 
for small Pe. For a set of differential equations 
which has a very small or very large parameter, 
it seems natural to try some of the perturbation 
techniques [4]. 

For our case, the solution of regular perturba- 
tion blows up for large x, and even singular 
perturbation (inner-outer expansion) does not 
seem to work. Instead, we will try to find a 
solution by straining the coordinate x. 

a2F 1 aF a2F 
=s+--+ (7) 

SOLUTION 

r ar ax2 Now let us define a new strained coordinate 
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g and aIso perturb a such that 

PA,+ f Pev". 
n=l 

(18) 

Functions f, are unknown yet and quite 
arbitrary. Our strategy here is to determine f. 
so as to make all perturbations p, except F0 
vanish Then we will finally have 

f! = F,. 09) 

First, we substitute equations (17) and (18) into 
equations (12)-(E), and follow the usual per- 
turbation procedure. 

The equations of zero order perperturbation 
become 

(201 

PO = 0 at r-+co (21) 

PO= 1 
s - (Pet/%) 

at t 

aP0 0 

-SF= 

= fl pe” f, (O,r) (22) 

at r=O,l. (23) 

To make the boundary condition (22) manage- 
able, we put a restriction on f, such that 

f, (0, r) = 0 n= 1,2,... (24) 

The zero order solution can be obtained by 
separation-of-variables ; it is 

PO = ---& exp [ - JW51 (25) 

The 
are 

SF, 

s-16 
: equations of the first order perturbations 

P, =o at t-,00 (27) 
P, =o at <=O (28) 

a& apb 46 
ar= --- ay ar 

at r = 0,l. (29) 

Besides restriction (24), we may put more restric- 
tions on fi to make F, vanish We set 

afl 0 
-= 

i% 

at r=O,l. 

Restrictions (30) and (31) force the right hand 
sides of equation (26) and boundary condition 
(29) to become zero. Therefore, the first order 
solution becomes trivial : 

P, = 0. (32) 

From equations (24), (30) and (31), we can find 
fi by separation-of-variables : 

U - exp C&/(s) - J(s f X)) xl> 

where A,, is the root of 

(33) 

J1 (A) = 0 (34) 

in ascending order excluding zero. 
In principle, we may carry on the same pro- 

cedures to obtain higher &. However, differential 
equations off, for n 3 2 become highly complex, 
and we will stop here. 

In sum, equations (17), (19), (25) and (33) yield 

F= l pezexp j -Jts)Cx + IJet, + . . .I1 
s-16 (35) 

where 

ll = &-{i - (1 - r2)2 

exp ([J(s) - & + &?)l>. (36) 
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In ob~ining expression (36), the fo~owing 
identity was used : 

The inverse Laplace transform of F gives 
r+im 

F = & 
s 

F est ds. (37) 
r-im 

Equation (38) was evaluated with the aid of a 
CDC 6400 computer, and the results were 
plotted on Figs. l-4. All the variables and 
parameters on the plots are dimensionless. 

F has a pole at s = Pe2/16 and branch points On Fig. 1, isoconcent~tion lines are shown 

at s = 0, 2: (n = 1, 2, . . .). Applying Cauchy’s with P&&t number, Pe = O-1, at time t = 0.2. 

integral formula [5--71 to equation (37), equa- We see that the radial variation of concentration 

tion (6) yields is negligible. 
Equation (38) was obtained by a perturbation 

applicable to small Pellet numbers. However, 
to exaggerate the effect of convection in dis- 
persion, Figs. 2 and 3 were plotted for relatively 
high P&lit numbers. The deviation from the 
true solution corresponding to high P&let 
numbers was not checked, but the approximate 
solution shows proper aspects of dispersion. 
The radial variation of concentration increases as 
P&St numbers increase, that is, as the convec- 
tion effect becomes strong. Also the longitudinal 
dispersion increases with increasing P&let 
numbers. 

exp[-P(Pt + Peg,)lsivg& 
where 

(38) 

g1 =g-(l-,2,2} 

m 4JoW9 c A; Jo (A) 
n=l 

(39) 

II=1 

+ w 4 JO&~) c l4 J tn ) exp C -x JR - ~‘11 sin w 
n 0 n 

g,=x+Pe{&[i--(1 -r’)j] 

m-1 

-c 4 Jo (A 4 
p J @ ) CxB [P - J(P2 - ml x n 0 n 

4, 4JoGLr) - c n;r Jo (A ) exP [ - +h%t - P2)1 ws ‘p . 
n 

PZ=f?l 

(41) 

RESULTS 

In Fig. 4, the concentration at the center of 
the tube was plotted along the longitudinal 
axis with time and P&let numbers as parameters. 
The lines with Pe = 0 represent the pure dif- 
fusional cases. At the beginning the differences 
of concentration due to differences of P&et 
numbers are small, but increase with time. 

A similar problem was investigated by Gill 
et al., applying the finite difference technique. 
The range of PM& number in their investiga- 
tion is higher than ours and their results were 
presented in a somewhat different fashion. 
However, our radial distribution of concentra- 
tion seems consistent with their results. 
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FIG. 1. Isoconcentration distribution at t = O-2 and Pe = 0.1. 
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FIG. 2. Isocmcentration distribution at t = O-2 and Pe = 1 .O. 
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Longitudinal distance, x 

Fro. 3. lsocmcentration distribution at t = 0~2 and Pe = 5.0. 
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DISTRIBUTION DE CONCENTRATION DANS L%CO;ULEMENT A TRAVERS 
UN TUYAU CIRCULAIRE 

RCumLUne solution analytique de la distribution de concentration dans un bcoulement g travers un 
tuyau circulaire est obtenu pour de petits nombres de P&let. On applique une technique de perturbation 
avec une coordonn6e d6form6e. Pour des nombres de P&let plus petits que 0, 1, on trouve que la distribution 

radiale de la concentration est pratiquement uniforme. 

KONZENTRATIONSVERTEILUNG IN EINER STRt)MUNG DURCH 
ROHRE VON KREISQUERSCHNI-IT 

Zusammenfassung-Eine analytische Liisung fti die Konzentrationsverteilung bei Stramungen in Rohren 
von Kreisquerschnitt liess sich fiir kleine PtclW-Zahlen erhalten. Es wurde eine StZirungsmethode mit 
gestreckter Koordinate angewandt. Fiir Ptcl&-Zahlen kleiner als 0,l ergab sich die radiale Konzentrations- 

verteilung praktisch als gleichfdrmig. 

PACIIPEAEJIEHBE HOHUEHTPAUBH IIPI4 TEYEHMII B KPYI’JIOm 
TPYbE 

AaHoTaqHa-HonyseKO aKanaTaqecKoe pemeHHe pacnpeEeneaxH KoHqeKTpaqnn np~ 
Te%HAIl B KpyrJIOt Tpy6e. &IH MaJIbIX 3HaseHHt =illCJIa HeKJle IICnOJIb30BaH MeTOH TeOpllH 
BoaMyLueKHti. HaZtneKo, 9To Ann sacen IIeKne, MeKbmnx 0, I, panHanbHoe PaCnpeReneHMe 

KOHqeHTparIHR npaKTM%CKU ORHOpOAHO. 


